Public Key Infrastructure (PKI)
Tutorial for CANS 20
Day 2: Revocation and Merkle Digest Schemes

Amir Herzberg
University of Connecticut

See ch. 8 of ‘Applied Intro to Cryptography’,

available at my site: .

12/15/2020 1

PKI Tutorial - CANS20: Agenda

Day 1: Introduction, X.509 and constraints

Day 2: Revocations and Merkle Digests
o The certificate revocation challenge

o Pre-fetching revocations: CRL, VRL, CRV

o Just-in-Time fetching: OCSP and variants

Day 3: CA failures + Certificate Transparency
Conclusions, directions and challenges

12/15/2020

Certificate Revocation

Sometimes, certificates must be revoked

Mainly, for security:

o Key compromise: revoke relevant certificate

o CA compromise: revoke all certificates it issued
0 Sometimes, for ‘administrative’ reasons

Challenge: inform relying parties, provide PONR
o PoNR: Proof-of-Non-Revocation (e.g., for signed document)

o Inform — when? Pre-fetch (e.g., daily) or fjust-in-time’
(before using the certificate)?

‘TO PRE-FETCH OR NOT TO PRE-FETCH?
THAT IS THE QUESTION.’

12/15/2020

Certificate Revocation List (CRL)

CA signs list of revoked certificates:
Signcas[{Cert#, Date}, Issued, Expires, Extensions]
o One signhature ‘covers’ all revocations in the CRL!

Option 1: prefetch, i.e., download before Next

o Cons: many CAs = lots of download, storage...

o Maybe no website using this CA ?

Option 2: ‘just-in-time’ — upon validating certificate
o Common design

o Con: delay on entering site (and possible failure, too)
Overall, seems fine, assuming revocations are rare

But are revocations really rare???

12/15/2020

Reality: Revocations Quite Common

Significant fraction of certificates may be

revoked at given time

0.120
0.100
0.080
0.060
0.040

0.020 All Certs ——— _
S T EV Certs ----

0.0(N) i | | 1 1 1

1/14 03/14 05/14 07/14 09/14 11/14 01/15 03/15

Heartbleed [Liu et al., IMC’15]

Fraction of Fresh Certs
that are Revoked

More efficient ways to revoke?

12/15/2020

More efficient revocation

Significant time btw CRLs = freshness concern

More efficient CRL schemes

o CRL distribution point — split certificates to several CRLs
Tradeoff between number of signatures and size of CRL
Helps only if we load CRLs only ‘as needed’

o Authorities Revocation List (ARL): list only revoked CAs
Can be maintained better, e.g., pre-fetched

o Delta CRL — only new revocations since last ‘base CRL’
Smaller downloads, but harder to prove non-revocation

Or: Vendor’s Revocation List (VRL)

o Revoked certificates of all CAs (maintained by vendor)
o Main current revocation mechanism (most browsers)

o May not contain all revoked certificates, though...

Or, let’s revoke using CRV, not CRL !

12/15/2020

. [Smith, Dickinson,
Iet’s Revoke with CRV's! Seamons NpSS20
A ‘revoked-bit-vector’ instead of CRL

CRV: Certificate Revocation Vector

o Add revocation number extension to each certificate,
counting certs issued by this CA, with same expiration date

0 Cert[CA,dgxp, 1] : cert with revocation number r expiring at
dEXP

0 CRV[CA,dgxp,r] = 1if Cert|CA, dgxp,] was revoked

Browsers fetch signed-CRVs from CA (dally)

For further efficiency:

o Compress, using the fact that most certs are not revoked

o By sending lengths of 0-bit (non-revoked) sequences

o And by sending ‘Delta-CRVs’: only revocations from yesterday
o Length of update: up to 22KB for 90M certificates

See paper for details, variants and beautiful graphs...

12/15/2020

Let’s Revoke with CRVs!

[Smith, Dickinson,
Seamons] NDSS’20

= A ‘reva

m CRV: (

o Add
coun

o Cert

dEXP
2 CRV|

= Brows

= For fu
o Com
0 By s{
o And
o Leng
= See pa

Initial Revocation Percentage

CRV Update Method

0.0%

100.0%
80.0%
60.0%
40.0%
20.0%

0.0%

20.0% 40.0% 60.0% 80.0% 100.0%
Final Revocation Percentage

(a) Update Method for All Percentages

CRV Update Method

Initial Revocation Percentage

(=]

Y
g

-

0.0%

2.0%
1.6%
1.2%
0.8%
0.0%

0.4% 0.8% 1.2% 1.6% 2.0%
Final Revocation Percentage

(¢) Update Method for Low Percentages

NEW

NONE

NEW

ADD

Initial Revocation Percentage

CRV Update Size

100.0%

80.0% 4

60.0% 4

40.0% 4

20.0% A

0.0% +
0.0%

2.0%

20.0% 40.0% 60.0% 80.0%
Final Revocation Percentage

100.0%

(b) Update Size for All Percentages

CRV Update Size

1.6%

N
2

0.8%

Initial Revocation Percentage

0.4% 4

0.0%
0.0%

0.4% 0.8% 1.2% 1.6%
Final Revocation Percentage

2.0%

(d) Update Size for Low Percentages

120 k8

100 KB

80 KB

60 KB

40KB

20KB

20 KB

17 KB

15 KB

12 KB

10 KB

jate
at

terday

12/15/2020

Let’s Revoke: read the fine print...

In rough order of increasing difficulty...

Revocation numbers potential exposure :
o Expose number of certs from CA
o X.509 serial numbers are random!

Requires a new extension to the certificates

CRV is per-CA and per expiration date

o Web-PKI: 100s CAs , many expiration days
o = Many many CRVs (>10,000 for sure)
o Sent to every relying party (browser) daily...

=» Still high overhead
Maybe we shouldn’t pre-fetch?

12/15/2020

PKI Tutorial - CANS20: Agenda

Day 1: Introduction, X.509 and

constraints

Day 2: Revocations and Merkle Digests
o The certificate revocation challenge
o Pre-fetching revocations: CRL, VRL, CRV

o Just-in-Time fetching: OCSP and
Day 3: CA failures + Certificate T

variants
‘ransparency

Conclusions, directions and cha

12/15/2020

lenges

10

Online Certificate Status Protocol (OCSP)

Most browsers don’t pre-fetch most certificates:
o Don’t use CRLs due to efficiency, freshness concerns
o Vendors lists (OneCRL, etc.): only some certificates

o CRVs: not deployed (and concerns?)

OCSP: ‘just-in-

time’ check for revocation

Signed responses (from trusted CA/server)

12/15/2020

OCSP Client OCSP Responder
(e.g., relying party) (CA or trusted QCSP server)
LIS request:
version, {Certd [, . .} [, signature] |, extensions)
(S respomse:
-+~ : : —
ResponseStatus, prodoced At, responses, signature

11

‘Classic’ use of OCSP by TLS Client

OCSP Responder
(often the CA)

TLS client

(browser)

-—— OCSP request

TLS Client Hello

TLS (web)
server

OCSP response

TLS Server Hello

s

TLS key exchange, finish

TLS finish

12/15/2020

12

‘Classic” OCSP: Delay and LLoss Concerns

Client asks CA about cert during handshake
CA signs response (real-time)

Delay
o Significant added delay to page load
Reliability

o What to do if no response (loss / no connectivity)?
Resend request: more overhead on client, CA and network

o How much to wait before determining loss?
Short timeout: easy to circumvent with DDoS
Long timeout: even longer delay on page load upon loss

=» Most browsers soft-fail: continue w/o OCSP response
o Hmm... is this secure ?

12/15/2020

13

‘MitM Attack on Soft-Fail ‘classic” OCSP

TLS client MitM (fake server, OCSP Responder
(browser) with revoked cert) (CA)
TLS Client Hello p—
TLS Server Hello
with revoked certificate
OCSP request -

(cdrop) je—— OCSP response

tirme—out —e

softfail TLS key exchange, finish |—e

| IS hmnish

(data) -

12/15/2020

Soft-Fail 1s too Soft. Why do 1t ?7°?

Why not deploy OCSP without soft-fail?
o Foiling the MitM soft-fail attack !

Hard-Fail: browser refuses connection
unless/until receiving (good) OCSP response

Possible answers?
o Good idea. Google, MS and Apple are dummies.
o No way, users will switch browsers.

Principle: User Experience (UX) > Security
o ‘Precedence rule’

12/15/2020

15

‘Classic’ use of OCSP: Three Concerns
= Delay and Reliability

o Significant added delay to page OCSP Responder |'TLS client
load (often the CA) | (browser)
o Soft-fail = vulnerability e
o Hard-fail = connection may fail
due to loss / delay P@Y I
= Privacy : exposes (domain, Aﬂ +—[OCSP requent
client) to CA Load:
A” Cllents’ OCSP response >
= Load and DDoS on CA: Flash-crowd Delayg
_ -
o Many clients (all browsers!) and bDoS and loss —
o Potentially ‘together’: flash
crowds

o Easy for abuse with DDoS

12/15/2020 16

OCSP-Stapling
Server runs OCSP, sends (' staples’) the CA-

signed response (CSR) during TLS handshake

TLS client

(browser)

TLS Client Hello
CSR extension

TLS
CSH extension (OCSP-Response)

Server Hello with

12/15/2020

TLS (web) server OCSP Responder (CA7)
locsp request ‘ _—
4———— | OCSP respc I_
with

Improve efficiency, privacy, reliability

Challenge: many servers don’t staple!

Or: staple 'sometimes/usually’
_

)

17

‘OCSP-Stapling: what if not stapled?

= OCSP-stapling: server
should send (staple’)
CA-signed OCSP
response, with
certificate

= But many servers don't
(always) staple!
o Don’t support OCSP, or:
support, but not always

tlme=ouit

o So, try ‘classic’ OCSP? _

o If no response... soft-
fail?
o =>» similar MitM attack !

TLS client

(browser)

| "'.]H\'l[Irl.i’ll'ii' SErver, |

with revoked cert) (CA)

OCSP Responder

TLS Client Hello
with OSR extension

'

wil | 1K

||"1 SETVEr l||'|||:-
it OCSP response

OCSP request

Hlnur|=

TLS key exchange, finish

l‘.-:”:.- IHI’ rl‘h’l][!llH‘

(data)

I I'LS finish

12/15/2020

18

‘OCSP: ‘“Must-Staple’ X.509 extension

= If server’s certificate contains ‘'must-staple’ extension,
client will hard-fail if an OCSP response isn’t stapled

= Mark as not critical X.509 extensions
o Since it may not be supported by some browsers

— , MitM (fake server,
TLS client (browser) with revoked cert)

TLS Client Hello with CSR extension pP—

I'LS Server Hello

-~ without CSR extension:
certificate has \lllat-%l;q)h't'xtv1|~h-u

abgrt (and alert /report?)

12/15/2020

Optimization to OCSP

OCSP stapling reduces overhead: one signature,
response per website (subject)

Still, high overhead:
0 Separate signature and message per website

Two types of optimizations:

o Hash-chain: use hashing to reduce signing
CA adds to OCSP response h(™ (x) for random x

Where h®(x) = h (@D (%)), h® (x) = h(x)

o Merkle-digest: same signature for many sites
Three methods...
Quick recap of this widely-used by rarely defined scheme...

12/15/2020

20

Merkle Digest Schemes

Digest function A: {m;e{0,1}*} - {0,1}*
Collision-resistance requirement

Validation of Inclusion: Pol and VerPol

o Pol function: compute Proof of Inclusion

o VerPol function: verify Pol

o Both: mandatory and optimized

o Optional, also Proof-of-Non-Inclusion (PoNI)

Extending the Sequence: PoC and VerPoC

o PoC: Proof of Consistency (from old digest to new)
o VerPoC function: verify PoC

o Optional

12/15/2020 21

Merkle digest scheme: definition

Definition 4.13 (Merkle digest scheme). A Merkle digest scheme M is a tuple
of three PPT functions (M.A, M.Pol, M.VerPol), where:

M.A is the Merkle tree digest function, whose input is a sequence of mes-
sages M = {m; € {0,1}*}; and whose output is an n-bit digest: M.A :
({0,1}) — {0, 1}".

M_.Pol is the Proof-of-Inclusion function. whose input is a sequence of mes-
sages M = {m; € {0,1}"};, an integer z € [1, |M|| (the indez of one mes-
sage in M), and whose output is a Proof-of-Inclusion (Pol): M.Pol :
({0,1}*)" x N — {0,1}*.

M. VerPol 1is the Verify-Proof-of-Inclusion predicate, whose inputs are digest
d € {0,1}", message m € {0,1}*, index i € N, proof p € {0,1}*, and
whose output is a bit (1 for ‘true’ or 0 for ‘false’): M.VerPol : {0,1}" x
{0,1}* x N x {0,1}* — {0,1}.

12/15/2020 22

Merkle digest: correctness and security

A Merkle digest scheme M is correct if for every sequence of messages

M = {m; € {0,1}7}; and every inder i € [1,|M||, the Proof-of-Inclusion
verifies correctly. 1.e.:

MVerPol(M.A(M), m;, 1, M.Pol(M,1)) (4.25)

A Merkle digest scheme M is secure if for every efficient (PPT) algorithm

A, both the collision advantage ¢, (n) and the Pol advantage Efj’f aln) are

negligible in n, t.e., smaller than any positive polynomial for sufficiently large
n (as n — o0), where:

£Gell () Pr [(z,7') < A(1") s.t. (z#2')

Coll, | AML.A(z) = M.A(Z)
Pr [(d,m,i,p) < A(1") s.t. M.VerPol(d,m,i,p) A
_ (Ax € D)(d = M.A(x))

Pol
€ A:,A (n)

12/15/2020 23

‘Two—layered Merkle tree

2IMT . A(maq, ..., my) hlh(my) # ... 4 h(my)
AMT .Pol((my,. .., m1),7) = {h(m;)}_,

AMT . VerPol(d,m,i,{z;:};_,) = [Tslfhr{::; h(nj&?‘?fd]
m, m, msy my
h h i L
) h(m,) h(ms) h(m,)
N 4/4%
h
y

[Allows each user to receive, validate only required items. How? 1

12/15/2020 24

To verity inclusion of m, ...

2IMT . A(mq, ..., m;)
2DMT .Pol((mq, ..., my),7)

hh(my) # ... # h(my)]
{h(m:)}i

TRUE if ; = h(m), and
[d:h(.r]_‘H_...“H".'EI)]

Py

Receive and validate only m,. Other hashes still required, >

Ih A1t
(ougm.

12/15/2020

25

‘ The Merkle Tree Construction

= Reduce length of ‘proofs’ — send less hashes of ‘other msgs’

5] M2 M3 my

D T

\ hi-4=h(hi 24 hz 4) /
{ IfL=0: h(my)

MT.AM) = Else h(MT.A(mq,...,mor—1) 4

_I'l_MT& {mgb—l_'_l.l, -eey ML)]

12/15/2020 26

Merkle Tree: Proot ot Inclusion (Pol)

= Proof of Inclusion (Pol) of m3 consists of:

0 hy_, = h(h(m1)||h(m2))
o h, = h(my)

z z SR N
|

)_/

\ hi 4 =h(hy 2 # hz 1) /

12/15/2020 27

Merkle-tree Solution 1/3: Tree of Certificate
Statuses, and Proof-of-Inclusion

718 = Signca.s(h—g 4 time)

12/15/2020

Merkle-tree Solution 2/3: Tree of Revoked
Certificates, and Proof-of-Non-Inclusion

01— = Signe g (hy—g # time)

hy-s

12/15/2020 29

Merkle-tree Solution 2/ 3:
Signed Revocation-bit Merkle-Tree

Ti—g = Signca.s(fhi—s # lime)

dodnd

) W &G

N TN N /“\ N

nrj | uff] 0 (b3) || ufi]rj‘.n | 0 (bg) nrj‘; II{EJ|
__,/ _)) UM N

= Further optimizations: don t send Zero-
hashes; batching: many certs in each leaf

12/15/2020

30

Signed Revocations-Status Merkle-Tree

LG]

Signeas(hi—g # lime)

b;: status of certificate i
Compresses very well

-

P -
e
e
T
1|

J\f IHULH/\/
{ Poo | | f ;\ | h :/ |y

Further optimizations:
don’t send zero-hashes

batching: many certs in
each leaf

. . U

1

(1)
AT~

Very efficient
One signature !
Short message
Quick validation

12/15/2020

31

Short-Term Certificates vs. OCSP

ldea: every method (e.g., OCSP) has short validity period
So: issue certs with short validity-period — never revoke!
A simple solution available today

Optimizations possible — just like for OCSP
o Using X509 extensions

E.g.: Hash-chain short-term certificate renewal
Yearly-signed certificate, monthly-preimage-renewal
December: sign new yearly cert, with h2)(x)

o Random X
o Each month, expose a preimage: ht(x), ht0(x) , ...
Validate extension, e.g.: hD(x)=h(h@9)(x))

12/15/2020 (c) Amir Herzberg

32

Note: Revocation Assume Honest CA!

A rogue CA can fall to revoke, allowing
attacker to use exposed key

Just one of the many possible attacks of a
rogue CA...

Next topic!!

12/15/2020

33

PKI Tutorial - CANS20: Agenda

Day 1: Introduction, X.509 and constraints
Day 2: Revocations and Merkle Digests

Day 3: CA failures
and Certificate Transparency

Conclusions, directions and challenges

12/15/2020 34

