
12/15/2020 1

Public Key Infrastructure (PKI)

Tutorial for CANS’20

Day 2: Revocation and Merkle Digest Schemes

See ch. 8 of ‘Applied Intro to Cryptography’,

available at my site: .

Amir Herzberg

University of Connecticut

PKI Tutorial – CANS’20: Agenda

 Day 1: Introduction, X.509 and constraints

 Day 2: Revocations and Merkle Digests

 The certificate revocation challenge

 Pre-fetching revocations: CRL, VRL, CRV

 Just-in-Time fetching: OCSP and variants

 Day 3: CA failures + Certificate Transparency

 Conclusions, directions and challenges

12/15/2020
2

12/15/2020
3

Certificate Revocation

 Sometimes, certificates must be revoked

 Mainly, for security:
 Key compromise: revoke relevant certificate

 CA compromise: revoke all certificates it issued

 Sometimes, for ‘administrative’ reasons

 Challenge: inform relying parties, provide PoNR
 PoNR: Proof-of-Non-Revocation (e.g., for signed document)

 Inform – when? Pre-fetch (e.g., daily) or ‘just-in-time’
(before using the certificate)?

‘To pre-fetch or not to pre-fetch?
That is the question.’

Certificate Revocation List (CRL)

 CA signs list of revoked certificates:

𝑆𝑖𝑔𝑛𝐶𝐴.𝑠 𝐶𝑒𝑟𝑡#, 𝐷𝑎𝑡𝑒 , 𝐼𝑠𝑠𝑢𝑒𝑑, 𝐸𝑥𝑝𝑖𝑟𝑒𝑠, 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠
 One signature ‘covers’ all revocations in the CRL!

 Option 1: prefetch, i.e., download before 𝑁𝑒𝑥𝑡
 Cons: many CAs  lots of download, storage…

 Maybe no website using this CA ?

 Option 2: ‘just-in-time’ – upon validating certificate

 Common design

 Con: delay on entering site (and possible failure, too)

 Overall, seems fine, assuming revocations are rare

 But are revocations really rare???

12/15/2020
4

Reality: Revocations Quite Common

 Significant fraction of certificates may be

revoked at given time

 More efficient ways to revoke?

12/15/2020
5

[Liu et al., IMC’15]Heartbleed

12/15/2020
6

More efficient revocation
 Significant time btw CRLs  freshness concern

 More efficient CRL schemes
 CRL distribution point – split certificates to several CRLs

 Tradeoff between number of signatures and size of CRL

 Helps only if we load CRLs only ‘as needed’

 Authorities Revocation List (ARL): list only revoked CAs
 Can be maintained better, e.g., pre-fetched

 Delta CRL – only new revocations since last ‘base CRL’
 Smaller downloads, but harder to prove non-revocation

 Or: Vendor’s Revocation List (VRL)
 Revoked certificates of all CAs (maintained by vendor)

 Main current revocation mechanism (most browsers)

 May not contain all revoked certificates, though…

 Or, let’s revoke using CRV, not CRL !

12/15/2020
7

Let’s Revoke with CRVs!
 A ‘revoked-bit-vector’ instead of CRL

 CRV: Certificate Revocation Vector
 Add revocation number extension to each certificate,

counting certs issued by this CA, with same expiration date

 𝐶𝑒𝑟𝑡 𝐶𝐴, 𝑑𝐸𝑋𝑃 , 𝑟 : cert with revocation number 𝑟 expiring at
𝑑𝐸𝑋𝑃

 𝐶𝑅𝑉[𝐶𝐴, 𝑑𝐸𝑋𝑃 , 𝑟] = 1 if 𝐶𝑒𝑟𝑡 𝐶𝐴, 𝑑𝐸𝑋𝑃, 𝑟 was revoked

 Browsers fetch signed-CRVs from CA (daily)

 For further efficiency:
 Compress, using the fact that most certs are not revoked

 By sending lengths of 0-bit (non-revoked) sequences

 And by sending ‘Delta-CRVs’: only revocations from yesterday

 Length of update: up to 22KB for 90M certificates

 See paper for details, variants and beautiful graphs…

[Smith, Dickinson,

Seamons] NDSS’20

12/15/2020
8

Let’s Revoke with CRVs!
 A ‘revoked-bit-vector’ instead of CRL

 CRV: Certificate Revocation Vector
 Add revocation number extension to each certificate,

counting certs issued by this CA, with same expiration date

 𝐶𝑒𝑟𝑡 𝐶𝐴, 𝑑𝐸𝑋𝑃 , 𝑟 : cert with revocation number 𝑟 expiring at
𝑑𝐸𝑋𝑃

 𝐶𝑅𝑉[𝐶𝐴, 𝑑𝐸𝑋𝑃 , 𝑟] = 1 if 𝐶𝑒𝑟𝑡 𝐶𝐴, 𝑑𝐸𝑋𝑃, 𝑟 was revoked

 Browsers fetch signed-CRVs from CA (daily)

 For further efficiency:
 Compress, using the fact that most certs are not revoked

 By sending lengths of 0-bit (non-revoked) sequences

 And by sending ‘Delta-CRVs’: only revocations from yesterday

 Length of update: up to 22KB for 90M certificates

 See paper for details, variants and beautiful graphs…

[Smith, Dickinson,

Seamons] NDSS’20

12/15/2020
9

Let’s Revoke: read the fine print…
 In rough order of increasing difficulty…

 Revocation numbers potential exposure :
 Expose number of certs from CA

 X.509 serial numbers are random!

 Requires a new extension to the certificates

 CRV is per-CA and per expiration date
 Web-PKI: 100s CAs , many expiration days

  Many many CRVs (>10,000 for sure)

 Sent to every relying party (browser) daily…

 Still high overhead

 Maybe we shouldn’t pre-fetch?

PKI Tutorial – CANS’20: Agenda

 Day 1: Introduction, X.509 and constraints

 Day 2: Revocations and Merkle Digests

 The certificate revocation challenge

 Pre-fetching revocations: CRL, VRL, CRV

 Just-in-Time fetching: OCSP and variants

 Day 3: CA failures + Certificate Transparency

 Conclusions, directions and challenges

12/15/2020
10

Online Certificate Status Protocol (OCSP)

 Most browsers don’t pre-fetch most certificates:

 Don’t use CRLs due to efficiency, freshness concerns

 Vendors lists (OneCRL, etc.): only some certificates

 CRVs: not deployed (and concerns?)

 OCSP: ‘just-in-time’ check for revocation

 Signed responses (from trusted CA/server)

12/15/2020
11

‘Classic’ use of OCSP by TLS Client

12/15/2020
12

‘Classic’ OCSP: Delay and Loss Concerns

 Client asks CA about cert during handshake

 CA signs response (real-time)

 Delay

 Significant added delay to page load

 Reliability

 What to do if no response (loss / no connectivity)?

 Resend request: more overhead on client, CA and network

 How much to wait before determining loss?

 Short timeout: easy to circumvent with DDoS

 Long timeout: even longer delay on page load upon loss

  Most browsers soft-fail: continue w/o OCSP response

 Hmm… is this secure ?

12/15/2020
13

MitM Attack on Soft-Fail ‘classic’ OCSP

12/15/2020
14

Soft-Fail is too Soft. Why do it ???

 Why not deploy OCSP without soft-fail?

 Foiling the MitM soft-fail attack !

 Hard-Fail: browser refuses connection

unless/until receiving (good) OCSP response

 Possible answers?

 Good idea. Google, MS and Apple are dummies.

 No way, users will switch browsers.

 Principle: User Experience (UX) > Security

 ‘Precedence rule’

12/15/2020
15

‘Classic’ use of OCSP: Three Concerns

 Delay and Reliability

 Significant added delay to page

load

 Soft-fail  vulnerability

 Hard-fail  connection may fail

due to loss / delay

 Privacy : exposes (domain,

client) to CA

 Load and DDoS on CA:

 Many clients (all browsers!)

 Potentially ‘together’: flash

crowds

 Easy for abuse with DDoS

12/15/2020
16

Load:

All clients;

Flash-crowd

and DDoS
Delay

and loss

OCSP-Stapling

12/15/2020
17

Server runs OCSP, sends (`staples’) the CA-

signed response (CSR) during TLS handshake

Improve efficiency, privacy, reliability

Challenge: many servers don’t staple!

Or: staple `sometimes/usually’

OCSP-Stapling: what if not stapled?
 OCSP-stapling: server

should send (`staple’)

CA-signed OCSP

response, with

certificate

 But many servers don’t

(always) staple!

 Don’t support OCSP, or:

support, but not always

 So, try ‘classic’ OCSP?

 If no response… soft-

fail?

  similar MitM attack !

12/15/2020
18

OCSP: ‘Must-Staple’ X.509 extension

 If server’s certificate contains ‘must-staple’ extension,

client will hard-fail if an OCSP response isn’t stapled

 Mark as not critical X.509 extensions

 Since it may not be supported by some browsers

12/15/2020
19

Optimization to OCSP

 OCSP stapling reduces overhead: one signature,

response per website (subject)

 Still, high overhead:

 Separate signature and message per website

 Two types of optimizations:

 Hash-chain: use hashing to reduce signing

 CA adds to OCSP response ℎ(𝑛) 𝑥 for random 𝑥

 Where ℎ(𝑛) 𝑥 = ℎ ℎ(𝑛−1) 𝑥 , ℎ(1) 𝑥 = ℎ(𝑥)

 Merkle-digest: same signature for many sites

 Three methods…

 Quick recap of this widely-used by rarely defined scheme…

12/15/2020
20

Merkle Digest Schemes

 Digest function ∆: 𝑚𝑖𝜖 0,1 ∗ → 0,1 ∗

 Collision-resistance requirement

 Validation of Inclusion: 𝑃𝑜𝐼 and 𝑉𝑒𝑟𝑃𝑜𝐼

 𝑃𝑜𝐼 function: compute Proof of Inclusion

 𝑉𝑒𝑟𝑃𝑜𝐼 function: verify PoI

 Both: mandatory and optimized

 Optional, also Proof-of-Non-Inclusion (PoNI)

 Extending the Sequence: 𝑃𝑜𝐶 and 𝑉𝑒𝑟𝑃𝑜𝐶

 𝑃𝑜𝐶: Proof of Consistency (from old digest to new)

 𝑉𝑒𝑟𝑃𝑜𝐶 function: verify PoC

 Optional

12/15/2020 21

Merkle digest scheme: definition

12/15/2020 22

Merkle digest: correctness and security

12/15/2020 23

Two-layered Merkle tree
 Hash each item in block separately:

𝑥1 = ℎ 𝑚1 , 𝑥2 = ℎ 𝑚2 , …

 Digest is hash of hashes:

𝑦 = ∆ 𝑚1,𝑚2,… = ℎ 𝑥1, 𝑥2, …

12/15/2020 24

𝑚1 𝑚2 𝑚3 𝑚4

ℎ
ℎ(𝑚1)

ℎ
ℎ(𝑚2)

ℎ
ℎ(𝑚3)

ℎ
ℎ(𝑚4)

ℎ
𝑦

𝑥1 𝑥2 𝑥4

Allows each user to receive, validate only required items. How?

To verify inclusion of 𝑚2…

12/15/2020 25

𝑚2

ℎ
ℎ(𝑚2)

ℎ𝑘
𝑑

𝑥1

𝑥2

𝑥4

Receive and validate only 𝑚2. Other hashes still required,

though.

𝑥3

12/15/2020 26

The Merkle Tree Construction
 Reduce length of ‘proofs’ – send less hashes of ‘other msgs’

12/15/2020 27

Merkle Tree: Proof of Inclusion (PoI)
 Proof of Inclusion (PoI) of 𝑚3 consists of:

 ℎ1−2 = ℎ ℎ 𝑚1 ||ℎ 𝑚2

 ℎ4 = ℎ 𝑚4

Merkle-tree Solution 1/3: Tree of Certificate

Statuses, and Proof-of-Inclusion

12/15/2020
28

Merkle-tree Solution 2/3: Tree of Revoked
Certificates, and Proof-of-Non-Inclusion

12/15/2020
29

Merkle-tree Solution 2/3:

Signed Revocation-bit Merkle-Tree

 Further optimizations: don’t send zero-

hashes; batching: many certs in each leaf

12/15/2020
30

Signed Revocations-Status Merkle-Tree

12/15/2020
31

• 𝒃𝒊: status of certificate 𝒊

• Compresses very well

• Further optimizations:

• don’t send zero-hashes

• batching: many certs in

each leaf

• Very efficient

• One signature !

• Short message

• Quick validation

12/15/2020 (c) Amir Herzberg
32

Short-Term Certificates vs. OCSP

 Idea: every method (e.g., OCSP) has short validity period

 So: issue certs with short validity-period – never revoke!

 A simple solution available today

 Optimizations possible – just like for OCSP
 Using X509 extensions

 E.g.: Hash-chain short-term certificate renewal

 Yearly-signed certificate, monthly-preimage-renewal

 December: sign new yearly cert, with h(12)(x)

 Random x

 Each month, expose a preimage: h(11)(x), h(10)(x) , …

 Validate extension, e.g.: h(11)(x)=h(h(10)(x))

Note: Revocation Assume Honest CA!

 A rogue CA can fail to revoke, allowing

attacker to use exposed key

 Just one of the many possible attacks of a

rogue CA…

 Next topic!!

12/15/2020
33

PKI Tutorial – CANS’20: Agenda

 Day 1: Introduction, X.509 and constraints

 Day 2: Revocations and Merkle Digests

 Day 3: CA failures

and Certificate Transparency

 Conclusions, directions and challenges

12/15/2020
34

