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Contributions



Contributions of this work

Adapt Jain et al. (2012) work and design a perfectly binding and computationally hiding
commitment scheme based on the Rank Syndrome Decoding (RSD) Problem.

Design interactive protocols for:
Knowledge of valid opening.
Proving linear relations.
Proving multiplicative (or any bitwise) relations.

Compute secure parameters for both LPN and RSD variants of the protocols.
Implement and compare (performance and efficiency) of both LPN and RSD variants with
suggested parameters for 128 bits of security.
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Highlights

Our work is the first zero-knowlegde protocol for arbitrary circuits whose security relies on the
Rank Syndrome Decoding problem.

Our proposal (RSD) generates proofs that are 60% smaller that the LPN variant for the same
security level.
Public parameters of the RSD variant are only 1% of respective parameters for the LPN variant.
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Preliminaries



Definitions

Definition (Linear (n, k)q-code)

A linear (n, k)q− codeC is a vector subspace of (Fq)n of dimension k,where k andn are positive
integers such that k < n, q is a prime power, andFq is the finite field with q elements. Elements
of the vector space are called vectors or words, while elements of the code are called codewords.

Definition (Generator and Parity Check Matrices)

A matrixG ∈M∗k,n (Fq) is called a generator matrix ofC if its rows form a basis ofC, i.e.

C = {x ·G : x ∈ (Fq)k
}

. A matrixH ∈M∗n−k,n (Fq) is called a parity-check matrix ofC if

C =
{
x ∈ (Fq)n : H · xT = 0

}
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Definitions

Definition (Hamming weightwH(v) of a vector)

The hamming weightwH(v) of a vector v is the number of its non-zero bits.

Definition (Rank weightwR(v) of a vector)

The rank weightwR(v) of a vector v is the rank of its matrix representation (number of linearly
independent vectors).
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Definitions

Definition (Rank preserving transformation function ΠP,Q(v))

LetQ ∈M∗m,m (Fq) be a q-ary matrix of sizem×m,P ∈M∗n,n (Fq) be a q-ary matrix of size
n× n, and v = (v1, . . . , vn) ∈ (Fqm)n. We define the function ΠP,Q such that
(π1, . . . , πn) = ΠP,Q(v) = φ−1(Q · φ(v)P ) ∈ (Fqm)n ,where for
h = 1, . . . , n, πh := β1

∑m
i=1

∑n
j=1Q1,ivi,jPj,h + . . .+βm

∑m
i=1

∑n
j=1Qm,ivi,jPj,h,with

β = {β1, . . . , βm} a basis of (Fq)m

Gaborit et al. (2011) proved that:
For anyx, y ∈ (Fqm)n any full rankP ∈M∗n,n (Fq) andQ ∈M∗m,m (Fq)
ΠP,Q has the rank preserving property wR (ΠP,Q(x)) = wR(x) and is a linear mapping
aΠP,Q(x) + bΠP,Q(y) = ΠP,Q(ax+ by).
ΠP,Q is invertible ifP andQ are.
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Decoding Problem

The decoding problem for random linear codes, consists of searching for the closest codeword to a
given vector:

Decoding Problem

GivenG, y = xG+ e, and the weightw, find the pair (x, e), where the weight of e isw.

In the case of random linear codes, the decoding problem is equivalent to the syndrome decoding
problem:

Syndrome Decoding Problem

GivenH, s = Hy, and the weightw, find y, where the hamming weight of y isw.

The Rank Syndrome Decoding problem is the same as the Syndrome Decoding problem however
the metric used for the weight of the error is the rank instead of the Hamming weight.
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Commitment Schemes

Definition (Commitment Schemes)
A triple of algorithms (Setup, Com,Ver) is called a commitment scheme if it satisfied the
following:

On input 1` the setup algorithm Setup outputs the public commitment parameters pp.
The commitment algorithm Com takes as input a message m from a message space M and the
public commitment parameters pp, and outputs a commitment/opening pair (c, d).
The verification algorithm Ver take the parameters pp, a message m, a commitment c and an
opening d and outputs true or false.
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Properties of commitment schemes

The commitment scheme we will describe satisfies the following security properties:
Correctness: Ver evaluates to true if the inputs are honestly computed.

Perfect Binding: With overwhelming probability over the choice of the public commitment
parameters, no commitment can be opened in two different ways.
Computational Hiding: A commitment, computationally hides the committed message if the
commitments are computationally indistinguishable.

8



Properties of commitment schemes

The commitment scheme we will describe satisfies the following security properties:
Correctness: Ver evaluates to true if the inputs are honestly computed.
Perfect Binding: With overwhelming probability over the choice of the public commitment
parameters, no commitment can be opened in two different ways.

Computational Hiding: A commitment, computationally hides the committed message if the
commitments are computationally indistinguishable.

8



Properties of commitment schemes

The commitment scheme we will describe satisfies the following security properties:
Correctness: Ver evaluates to true if the inputs are honestly computed.
Perfect Binding: With overwhelming probability over the choice of the public commitment
parameters, no commitment can be opened in two different ways.
Computational Hiding: A commitment, computationally hides the committed message if the
commitments are computationally indistinguishable.

8



Commitment Scheme



Commitment scheme in the rank metric

Let q be the prime characteristic,m the degree of the q-ary extension fieldFqm , the bit lengthµ of
a message m ∈ Fµq , the bit lengthπ of the randomness s ∈ Fπq , the lengthn of the linear codeC,
and the rank weight ρ of an error e ∈ Fnqm .

Setup(1`)

Gm ←M∗µ
m
,n

(Fqm)

Gs ←M∗π
m
,n (Fqm)

returnG =
(
GT

s ‖GT
m

)T

ComG(m)

s←$ Fπ2
e←$Fnqm , s.t. wR(e) = ρ

c = (s‖m) ·G+ e

return c, s

VerG(c,m′, s′)

e′ = c + (s′‖m′) ·G
if wR (e′) = ρ return True
else return False
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Parameters

In order to compare our scheme (RSD) with the Hamming weight variant (LPN) we had to
compute parameters for both.

For a quantum security level of 128 bits:

Parameters |Secret| |Public Param.| Average Communication

Hamming Formula (n, k, w) k + n n+ kn+ log2(w) 5n+ d2/3(n log2(n))e+ 2λ
Bits (2640,1320,284) 3960 3487449 33461

Rank (this work) Formula (q,m, n, k, ρ) mk +mn mn+mkn+ log2(ρ) 5mn+ d2/3(m2 + n2)e+ 2λ
Bits (2,43,38,17,13) 2365 29416 10622

Table 1: Communication cost and parameters bit sizes of the Σ-protocol of knowledge of valid opening

Average communication cost is about 60% lower while the public parameters size is two orders of
magnitude lower. The size of the secret in ZKP is 40% lower.
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Performance



Implementation

We have implemented both the work from Jain et al. (2012) and our variant with the parameters
shown in previous slide.

Implemented in C++ using the NTL library from Victor Shoup.
Benchmarks conducted on 2.9GHz Quad-Core Intel Core i7 with 16GB of LPDD3 RAM at
2133MHz.
You can access the code https://github.com/Crypto-TII/2020-CANS-rank_commitments
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Commitment Scheme

Commitment Scheme
Jain et. al. This work

Routine Subroutine Time [ms] Routine Subroutine Time [ms]
Setup Generate matrixA 1.303 Setup Generate matrixG 0.030

Commitment
Generate random vector r negl.

Commitment
Generate random vectorπ negl.

Generate error vector e 0.168 Generate error vector e 1.800
Compute commitment c 0.029 Compute commitment c 0.025

Total 0.197 Total 1.825

Verification Recover error vector e 0.029 Verification Recover error vector e 0.0250
Compute hamming weight of e 0.001 Compute rank of e 0.0160

Total 0.030 Total 0.041

Table 2: Commitment scheme performance comparison.

12



Knowledge of Valid Opening
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Notable Observations

The generation of the commitment is slower in the rank metric because the algorithm that
generates an error of certain rank slow.
The verification of the commitment is slower in the rank metric because computing the rank of a
matrix is slower that computing the Hamming weight of a vector.
The generation of matrixA (Hamming metric) is slower thanG (Rank metric) because of their
difference in the dimensions.
Verification time of Zero-Knowlegde proofs in the rank metric is around 70-100 times faster
than the Hamming metric.
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Conclusions and Future
Work



Conclusions

We showed that quantum-resistant commitments and zero-knowledge proofs can be built
upon the Rank Syndrome Decoding problem.

Our protocol is quasi-linear in the size of the circuit and has soundness 2/3.
Provide implementations of both variants (Hamming and Rank) with parameters achieving 128
bits of security.
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Future work

Use structured codes (quasi-cyclic) to further improve efficiency and performance.
Look for a better proof construction than iterative challenge response.
Design and implementation of the 5-pass version.
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