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Introduction

● Modern-day malware are intelligent enough in evading detection of Control and Command 

server (C2C) infrastructure by using  various advanced  techniques.
● Domain Generation Algorithms (DGA) is one such popular evasive technique to contact C2C [1]

● Usage is rapidly increasing in Advanced persistent Threat (APT), Ransomware & Botnet attacks in 

recent times [2]



     Fig.1. DGA domains in attack scenario [3]



Brief History of DGA Domains
1. Legacy Malware developers used to hard code the IP address of C2C in malware payload itself

 Catch :  Hardcoded IP address can be simply found out during reverse engineering of malware payload 

Fig.2. Hardcoded C2C list in emotet malware [4]



Brief History of DGA Domains
2.     Attackers generate a list of domains using Pseudo Random Number Generators (PRNG’s)

Fig.3. Character Based DGA-PRNG [5]

 Note :  Recent Advances in malware research addressed this problem to a large extent [6]



Brief History of DGA Domains
3.  word based DGA - malware writers uses a set of words from dictionary to construct meaningful            

substrings that resembles real domain names.

    Example : crossmentioncare.com , manygoodnews.com 

● Matsnu - Contains 2 to 3 words from a preferred dictionary and can generate 10 domains per day. 

[com] is the possible TLD.  (world-bite-care.com, activitypossess.com, mattermiss-type.com)

● SuppoBox - Contain [net,ru] as TLD Combines two words from the word lists. Can generate 254 

domains per day. (tablethirteen.net childrencatch.net )

● Gozi  -  Widely used in banking trojans and rootkits that persist for a long time in sensitive 

corporate networks (morelikestoday.com, sociallyvital.com)

               Pzid, CryptoWall, Volatile, Banjori are other families of Word based DGA Malware.

 



Issues with Word Based DGA Detection

Key Issue : Proximity to Real world domains 

● Plohmann et.al - Comprehensive study on DGA malware [7]

○ Explains Complexity of Word-list based DGA families and their detection

● Curtin et.al - Detecting domains with recurrent neural network [8]

○ Smashword  Score ( measures how much DGA domain is close to the English word)

○ Issue : Not adaptable for corporate use ( Matsnu - 89% , Gozi-77.3%, Suppobox-79.8% )

● Luhui et.al - Detecting wordsbased DGA using semantic Analysis [9]

○ Front-word-correlation (FWC)  & Back-word-correlation (BWC)

○ Issue : Poor Accuracy ( ~0.83 ) with High False positives

 



Issues with Word Based DGA Detection

● Woodbridge et.al - Predicting wordbased Domains using LSTM neural network [10]

○ Needs no feature extraction & less classification time

○ Issue : Class imbalance ; Failed to detect Suppobox and Matsnu families

●  Jasper et.al - DGA detection using popularity method [11]

○ Sudden increase to traffic flow to a particular is monitored over the period of time

○ Issue : Minimum 1 day to observe changes in network; Not suitable for realtime 

● Choi et.al - BotGAD framework to detect malicious domain  [12]

○ Captures all DNS traffic passing through the network.

○ Issues : Depends only on TTL records ; Easily evaded by modern APT ‘s & Botnets

 



Proposed Model

Fig.4. Proposed Model for Word Based DGA detection

Table 1. Features considered for MATSNU domain



Experiment Results & Analysis

        GOAL : We performed 5 experiments to reduce feature set and improve accuracy

1. 15 Features for  model training + Feature Correlation Analysis.

2. Top 8 Features for model training (  from Feature Importance Analysis)

3. Principal Component Analysis on 15 feature dataset ( Linear Dimensionality reduction technique)[13]

4. Diffusion Map on 15 feature dataset ( Non-linear Dimensionality reduction technique) [14]

5. Robustness Analysis of our model ( Synthetic data generated using CTGAN [15] )



Experiment - 1

● Considered all 15 features for constructing model training

● 40000 samples ( 10000 random samples from each class i.e Matsnu, Suppobox, Gozi, Bening)

Take Away : C5.0 Stands out to be Best Performer  ( Low FPR + Low FNR + Low Training time ) 

 

Fig.5. Accuracy and Kappa Graph for various classifiers for 15 feature dataset



Fig.6. Feature Correlation Analysis for 15 feature dataset Fig.7. Feature importance Graph for 15 feature dataset



Experiment - 2
● We consider top 8 features to train our model  ( 4 - Lexical + 4 - Network based)  

● We achieve almost similar accuracy ( 2% drop) by reducing half of features

                    Fig.8. Feature Importance  for 8  feature dataset

 Take Away : Random Forest tops in terms of accuracy but it’s training time and model size is almost 

double than C5.0 



Experiment - 3
● We apply Principal Component Analysis on 15 feature dataset.

● Our observation , 4 % drop in accuracy by considering top 8 Principal Components 

           Fig.9. Principal Components vs Variance plot

 Take Away : We observe a large number of GOZI, MATSNU, SUPPOBOX families misclassified as benign 

i.e less significant principal components are impacting decision stumps of ensemble models.



Experiment - 4
● We apply Diffusion map on 4800 samples ( 1200 sample from each type)

● In addition we applied K-means on normal space & Diffusion space 

                        Fig.10. Diffusion Map with alpha=0.005                                                                             Fig.11. K-means on Diffusion Map data ( alpha=0.005)

            

Take Away : There is no underlying structure for this dataset



Experiment - 5
● We test Robustness of our model in this experiment using CTGAN

● Tested our model with 30000 synthetic data samples ( 10000 from each DGA family) + 4000 

legitimate.

     Take Away : Our model did a decent work by classifying malicious and benign domains with 0.9503 Accuracy

Fig.12. Generating synthetic data for DGA families using CTGAN



Summary & Future Scope
   In this paper, we mainly addressed :

1. Ensemble models for detecting word based DGA families ( GOZI, MATSNU, SUPPOBOX) 

2. Linear & Nonlinear dimensionality reduction techniques to understand underlying structure of data 

3.  CTGAN to generate synthetic test data to verify robustness of our models

 Possible Future works : 

● Extend this approach for emerging DGA families 

● GAN to generate synthetic data for future DGA families →  Building robust botnet/malware models
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