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Introduction

Modern-day malware are intelligent enough in evading detection of Control and Command
server (C2C) infrastructure by using various advanced techniques.
Domain Generation Algorithms (DGA) is one such popular evasive technique to contact C2C [1]

Usage is rapidly increasing in Advanced persistent Threat (APT), Ransomware & Botnet attacks in
recent times [2]
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Brief History of DGA Domains

1. Legacy Malware developers used to hard code the IP address of C2C in malware payload itself
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Fig.2. Hardcoded C2C list in emotet malware [4]

Catch : Hardcoded IP address can be simply found out during reverse engineering of malware payload



Brief History of DGA Domains

2. Attackers generate a list of domains using Pseudo Random Number Generators (PRNG’s)
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Fig.3. Character Based DGA-PRNG [5]

Note : Recent Advances in malware research addressed this problem to a large extent [6]



Brief History of DGA Domains

3. word based DGA - malware writers uses a set of words from dictionary to construct meaningful
substrings that resembles real domain names.

Example : crossmentioncare.com, manygoodnews.com

e Matsnu - Contains 2 to 3 words from a preferred dictionary and can generate 10 domains per day.
[com]is the possible TLD. (world-bite-care.com, activitypossess.com, mattermiss-type.com)
e SuppoBox - Contain [net,ru] as TLD Combines two words from the word lists. Can generate 254

domains per day. (tablethirteen.net childrencatch.net)
e Gozi - Widely used in banking trojans and rootkits that persist for a long time in sensitive

corporate networks (morelikestoday.com, sociallyvital.com)

Pzid, CryptoWall, Volatile, Banjori are other families of Word based DGA Malware.



Issues with Word Based DGA Detection

Key Issue : Proximity to Real world domains

e Plohmann et.al - Comprehensive study on DGA malware [7]
o Explains Complexity of Word-list based DGA families and their detection

e Curtin et.al - Detecting domains with recurrent neural network [8]
o Smashword Score ( measures how much DGA domain is close to the English word)
o Issue:Not adaptable for corporate use ( Matsnu - 89%, Gozi-77.3%, Suppobox-79.8% )

e Luhui et.al - Detecting wordsbased DGA using semantic Analysis [9]
o  Front-word-correlation (FWC) & Back-word-correlation (BWC)
o Issue: Poor Accuracy ( ~0.83) with High False positives



Issues with Word Based DGA Detection

e Woodbridge et.al - Predicting wordbased Domains using LSTM neural network [10]
o Needs no feature extraction & less classification time
o Issue: Classimbalance; Failed to detect Suppobox and Matsnu families
e Jasper et.al - DGA detection using popularity method [11]
o Sudden increase to traffic flow to a particular is monitored over the period of time
o Issue: Minimum 1 day to observe changes in network; Not suitable for realtime
e Choi et.al - BotGAD framework to detect malicious domain [12]
o Captures all DNS traffic passing through the network.
o Issues:Dependsonly on TTL records ; Easily evaded by modern APT ‘s & Botnets



Proposed Model
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Fig.4. Proposed Model for Word Based DGA detection

N Feature Example(crossmentioncare.com)
1 Domain Name crossmentioncare.com
2 Word Count 3
3 Length 16
4 Syllable Count 4
5 Vowel Count 6
6 Consonant Count 10
7 | Created Since(in days) 2192
8 |Updated Since(in days) 2189
9 Registrar(Binary) 1
10 TTL (in seconds) 86400
11 IANA (Binary) 1
12 Unique Letters 10
13 Hyphen (Binary) 0
14 Underscore (Binary) 0
15 Family Type MATSNU

Table 1. Features considered for MATSNU domain
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Experiment Results & Analysis

GOAL : We performed 5 experiments to reduce feature set and improve accuracy

15 Features for model training + Feature Correlation Analysis.

Top 8 Features for model training ( from Feature Importance Analysis)

Principal Component Analysis on 15 feature dataset ( Linear Dimensionality reduction technique)[13]
Diffusion Map on 15 feature dataset ( Non-linear Dimensionality reduction technique) [14]

Robustness Analysis of our model ( Synthetic data generated using CTGAN [15])



Experiment - 1

e Considered all 15 features for constructing model training
e 40000 samples ( 10000 random samples from each class i.e Matsnu, Suppobox, Gozi, Bening)
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Fig.5. Accuracy and Kappa Graph for various classifiers for 15 feature dataset

Take Away : C5.0 Stands out to be Best Performer (Low FPR + Low FNR + Low Training time)
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Fig.7. Feature importance Graph for 15 feature dataset




Experiment - 2

e We consider top 8 features to train our model (4 - Lexical + 4 - Network based)

e We achieve almost similar accuracy ( 2% drop) by reducing half of features
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Fig.8. Feature Importance for 8 feature dataset
Take Away : Random Forest tops in terms of accuracy but it’s training time and model size is almost

double than C5.0



Experiment - 3

e We apply Principal Component Analysis on 15 feature dataset.

e Ourobservation, 4 % drop in accuracy by considering top 8 Principal Components
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Fig.9. Principal Components vs Variance plot

Take Away : We observe a large number of GOZI, MATSNU, SUPPOBOX families misclassified as benign

i.e less significant principal components are impacting decision stumps of ensemble models.



Experiment - 4
e We apply Diffusion map on 4800 samples ( 1200 sample from each type)

e Inaddition we applied K-means on normal space & Diffusion space

Cluster in 3D with alpha = 0.005
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Fig.10. Diffusion Map with alpha=0.005 Fig.11. K-means on Diffusion Map data ( alpha=0.005)

Take Away : There is no underlying structure for this dataset



Experiment - 5
e We test Robustness of our model in this experiment using CTGAN

e Tested our model with 30000 synthetic data samples ( 10000 from each DGA family) + 4000

legitimate.
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Take Away : Our model did a decent work by classifying malicious and benign domains with 0.9503 Accuracy

Fig.12. Generating synthetic data for DGA families using CTGAN
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Summary & Future Scope

In this paper, we mainly addressed :

1. Ensemble models for detecting word based DGA families ( GOZI, MATSNU, SUPPOBOX)
2. Linear & Nonlinear dimensionality reduction techniques to understand underlying structure of data
3. CTGAN to generate synthetic test data to verify robustness of our models

Possible Future works :

e Extend this approach for emerging DGA families
e GAN to generate synthetic data for future DGA families — Building robust botnet/malware models
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